Skip navigation
Help

Apache Hadoop

warning: Creating default object from empty value in /var/www/vhosts/sayforward.com/subdomains/recorder/httpdocs/modules/taxonomy/taxonomy.pages.inc on line 33.

This aricle, F1: A Distributed SQL Database That Scales by Srihari Srinivasan, is republished with permission from a blog you really should follow: Systems We Make - Curating Complex Distributed Systems.

With both the F1 and Spanner papers out its now possible to understand their interplay a bit holistically. So lets start by revisiting the key goals of both systems.

0
Your rating: None

Abstract
This paper presents Polybase, a feature of SQL Server PDW V2 that allows users to manage and query data stored in a Hadoop
cluster using the standard SQL query language. Unlike other database systems that provide only a relational view over HDFSresident data through the use of an external table mechanism, Polybase employs a split query processing paradigm in which
SQL operators on HDFS-resident data are translated into MapReduce jobs by the PDW query optimizer and then executed on the Hadoop cluster. The paper describes the design and implementation of Polybase along with a thorough performance evaluation that explores the benefits of employing a split query processing paradigm for executing queries that involve both structured data in a relational DBMS and unstructured data in Hadoop. Our results demonstrate that while the use of a splitbased query execution paradigm can improve the performance of some queries by as much as 10X, one must employ a cost-based query optimizer that considers a broad set of factors when deciding whether or not it is advantageous to push a SQL operator to Hadoop. These factors include the selectivity factor of the predicate, the relative sizes of the two clusters, and whether or not their nodes are co-located. In addition, differences in the semantics of the Java and SQL languages must be carefully considered in order to avoid altering the expected results of a query.

Link to the paper

0
Your rating: None
Original author: 
Todd Hoff

Erasure codes are one of those seemingly magical mathematical creations that with the developments described in the paper XORing Elephants: Novel Erasure Codes for Big Data, are set to replace triple replication as the data storage protection mechanism of choice.

The result says Robin Harris (StorageMojo) in an excellent article, Facebook’s advanced erasure codes: "WebCos will be able to store massive amounts of data more efficiently than ever before. Bad news: so will anyone else."

Robin says with cheap disks triple replication made sense and was economical. With ever bigger BigData the overhead has become costly. But erasure codes have always suffered from unacceptably long time to repair times. This paper describes new Locally Repairable Codes (LRCs) that are efficiently repairable in disk I/O and bandwidth requirements:

These systems are now designed to survive the loss of up to four storage elements – disks, servers, nodes or even entire data centers – without losing any data. What is even more remarkable is that, as this paper demonstrates, these codes achieve this reliability with a capacity overhead of only 60%.

They examined a large Facebook analytics Hadoop cluster of 3000 nodes with about 45 PB of raw capacity. On average about 22 nodes a day fail, but some days failures could spike to more than 100.

LRC test results found several key results.

  • Disk I/O and network traffic were reduced by half compared to RS codes.
  • The LRC required 14% more storage than RS, information theoretically optimal for the obtained locality.
  • Repairs times were much lower thanks to the local repair codes.
  • Much greater reliability thanks to fast repairs.
  • Reduced network traffic makes them suitable for geographic distribution.
  • LRC test results found several key results.
  • Disk I/O and network traffic were reduced by half compared to RS codes.

I wonder if we'll see a change in NoSQL database systems as well? 

Related Articles

0
Your rating: None
Original author: 
Todd Hoff

This is a guest post by Yelp's Jim Blomo. Jim manages a growing data mining team that uses Hadoop, mrjob, and oddjob to process TBs of data. Before Yelp, he built infrastructure for startups and Amazon. Check out his upcoming talk at OSCON 2013 on Building a Cloud Culture at Yelp.

In Q1 2013, Yelp had 102 million unique visitors (source: Google Analytics) including approximately 10 million unique mobile devices using the Yelp app on a monthly average basis. Yelpers have written more than 39 million rich, local reviews, making Yelp the leading local guide on everything from boutiques and mechanics to restaurants and dentists. With respect to data, one of the most unique things about Yelp is the variety of data: reviews, user profiles, business descriptions, menus, check-ins, food photos... the list goes on.  We have many ways to deal data, but today I’ll focus on how we handle offline data processing and analytics.

In late 2009, Yelp investigated using Amazon’s Elastic MapReduce (EMR) as an alternative to an in-house cluster built from spare computers.  By mid 2010, we had moved production processing completely to EMR and turned off our Hadoop cluster.  Today we run over 500 jobs a day, from integration tests to advertising metrics.  We’ve learned a few lessons along the way that can hopefully benefit you as well.

Job Flow Pooling

0
Your rating: None


Leaders in Big Data

Google Tech Talk October 22, 2012 ABSTRACT Discussing the evolution, current opportunities and future trends in big data Presented by Google and the Fung Institute at UC Berkeley SPEAKERS: Moderator: Hal Varian, an economist specializing in microeconomics and information economics. He is the Chief Economist at Google and he holds the title of emeritus professor at the University of California, Berkeley where he was founding dean of the School of Information. Panelists: Theo Vassilakis, Principal Engineer/Engineering Director at Google Gustav Horn, Senior Global Consulting Engineer, Hadoop at NetApp Charles Fan, Senior Vice President at VMware in strategic R&D
From:
GoogleTechTalks
Views:
4980

77
ratings
Time:
58:47
More in
Science & Technology

0
Your rating: None