Skip navigation

Digital art

warning: Creating default object from empty value in /var/www/vhosts/ on line 33.
Original author: (Mitchell Whitelaw)

At CODE2012 I presented a paper on "programmable matter" and the proto-computational work of Ralf Baecker and Martin Howse - part of a long-running project on digital materiality. My sources included interviews with the artists, which I will be publishing here. Ralf Baecker's 2009 The Conversation is a complex physical network, woven from solenoids - electro-mechanical "bits" or binary switches. It was one of the works that started me thinking about this notion of the proto-computational - where artists seem to be stripping digital computing down to its raw materials, only to rebuild it as something weirder. Irrational Computing (2012) - which crafts a "computer" more like a modular synth made from crystals and wires - takes this approach further. Here Baecker begins by responding to this notion of proto-computing.

MW: In your work, especially Irrational Computing, we seem to see some of the primal, material elements of digital computing. But this "proto" computing is also quite unfamiliar - it is chaotic, complex and emergent, we can't control or "program" it, and it is hard to identify familiar elements such as memory vs processor. So it seems that your work is not only deconstructing computing - revealing its components - but also reconstructing it in a strange new form. Would you agree?

RB: It took me a long time to adopt the term "proto-computing". I don't mean proto in a historical or chronological sense; it is more about its state of development. I imagine a device that refers to the raw material dimension of our everyday digital machinery. Something that suddenly appears due to the interaction of matter. What I had in mind was for instance the natural nuclear fission reactor in Oklo, Gabon that was discovered in 1972. A conglomerate of minerals in a rock formation formed the conditions for a functioning nuclear reactor, all by chance. 

Computation is a cultural and not a natural phenomenon; it includes several hundred years of knowledge and cultural technics, these days all compressed into a microscopic form (the CPU). In the 18th century the mechanical tradition of automata and symbolic/mathematical thinking merged into the first calculating and astronomical devices. Also the combinatoric/hermeneutic tradition (e.g. Athanasius Kircher and Ramon Llull) is very influential to me. These automatons/concepts were philosophical and epistemological. They were dialogic devices that let us think further, much against our current utilitarian use of technology. Generative utopia.

Schematic of Irrational Computing courtesy of the artist - click for PDF

MW: Your work stages a fusion of sound, light and material. In Irrational Computing for example we both see and hear the activity of the crystals in the SiC module. Similarly in The Conversation, the solenoids act as both mechanical / symbolic components and sound generators. So there is a strong sense of the unity of the audible and the visual - their shared material origins. (This is unlike conventional audiovisual media for example where the relation between sound and image is highly constructed). It seems that there is a sense of a kind of material continuum or spectrum here, binding electricity, light, sound, and matter together?

RB: My first contact with art or media art came through net art, software art and generative art. I was totally fascinated by it. I started programming generative systems for installations and audiovisual performances. I like a lot of the early screen based computer graphics/animation stuff. The pure reduction to wireframes, simple geometric shapes. I had the feeling that in this case concept and representation almost touch each other. But I got lost working with universial machines (Turing machines). With Rechnender Raum I started to do some kind of subjective reappropriation of the digital. So I started to build my very own non-universal devices. Rechnender Raum could also be read as a kinetic interpretation of a cellular automaton algorithm. Even if the Turing machine is a theoretical machine it feels very plastic to me. It a metaphorical machine that shows the conceptual relation of space and time. Computers are basically transposers between space and time, even without seeing the actual outcome of a simulation. I like to expose the hidden structures. They are more appealing to me than the image on the screen.

MW: There is a theme of complex but insular networks in your work. In The Conversation this is very clear - a network of internal relationships, seeking a dynamic equilibrium. Similarly in Irrational Computing, modules like the phase locked loop have this insular complexity. Can you discuss this a little bit? This tendency reminds me of notions of self-referentiality, for example in the writing of Hofstadter, where recursion and self-reference are both logical paradoxes (as in Godel's theorem) and key attributes of consciousness. Your introverted networks have a strong generative character - where complex dynamics emerge from a tightly constrained set of elements and relationships.

RB: Sure, I'm fascinated by this kind of emergent processes, and how they appear on different scales. But I find it always difficult to use the attribute consciousness. I think these kind of chaotic attractors have a beauty on their own. Regardless how closed these systems look, they are always influenced by its environment. The perfect example for me is the flame of a candle. A very dynamic complex process communicating with its environment, that generates the dynamics.

MW: You describe The Conversation as "pataphysical", and mention the "mystic" and "magic" aspects of Irrational Computing. Can you say some more about this a aspect of your work? Is there a sort of romantic or poetic idea here, about what is beyond the rational, or is this about a more systematic alternative to how we understand the world?

RB: Yes, it refers to an other kind of thinking. A thinking that is anti "cause and reaction". A thinking of hidden relations, connections and uncertainty. I like Claude Lévi-Strauss' term "The Savage Mind".

Your rating: None
Original author: 
Amar Toor


Tom Beddard is a UK-based artist with a fractal fascination. Among his most fascinating works is a set called Fabergé Fractals — a collection of mesmerizing 3D structures created from computer modeling software. As Architizer reports, Beddard created his models using iterative formulas, with the output of one iteration serving as the input for the next. The result is a collection of fractal structures that are equal parts organic and geometric in their intricacy.

Continue reading…

Your rating: None

In a world made small and accessible by technology, it is easy to forget the magnitude of nature’s infinite complexity. But sometimes technology reminds us, such as when trawling planet Earth on Google’s Satellite View, zooming across landscapes partitioned by natural and unnatural boundaries.

While searching Google Earth, Paul Bourke, a research associate professor at the University of Western Australia, discovered an amazing sight—the patterns of the Earth seemed to form a delicate geometric pattern when viewed from the sky. Not only delicate, but almost perfect. Bourke was captivated by the geography—lacy tracks of rivers and mountain ranges stretching across the Earth in unison as if digitally cloned.

Fractals are recognized as patterns of self-similarity over varying degrees of scale. There are both mathematical fractals as well as natural fractals—the former are idealized and found across a range of scales, while the latter generally only exist across a smaller scale range.

Bourke explains that fractals are found in all parts of life, from the brain sciences and astrophysics to geographic formations and riverbeds. “Fractal and chaotic processes are the norm, not the exception.”

“I always knew these amazing natural patterns would be there,” he said. “They are literally everywhere—it’s just a matter of finding them.”

And find them he did. Bourke, an authority on fractals and visualizations, showcases more than 40 different fractals he’s uncovered while zooming through the satellite views of 25 countries. Through his website, he encourages users to submit examples they’ve found in their own browsing, and provides KMZ coordinate files for each image, allowing users to visit the exact views of the fractal features. Bourke’s collection realizes the power enabled by the open-ended tools of modern technology and applies them to a practical and popular aesthetic end.

To see more natural fractal patterns, visit Bourke’s website.

Your rating: None


In an perpetuating series of beautiful and abstract stills, animations, films and applied graphics, Dextro – an original internet artist – has been using the most basic of visual tropes even the earliest web-ready computer could offer; generative algorithms, boid-like figurations and specific pixel display. And with them he has created some of the most extraordinary images that are analogous of so many things in the real world, like waves and light and sand dunes and other poetic commonalities and it’s ongoing! If you haven’t come across this work before, though you’re likely to have seen his imitators, then now is the time to let the almost meditative cumulative artworks remind you of how freaky-cool technology was/is/will be.

Read more

Advertise here via BSA

Your rating: None

Some Like it Rough by Matteo Scalera

Matteo Scalera has put up his artbook project on Kickstarter at

Not sure what to expect since there aren't a lot of preview pages. But you can check out his art on his deviantart page, which surprisingly isn't listed on the Kickstarter page.


Your rating: None

Material sample interpretations as simulations of macroscopically photographed nano-sculptures. The base for these enlarged tiny grown crystal structures are textile pattern, with two different levels of translation. One is the layer of color, where a scan of the textile is taken directly to color individual parts of the structure. The second layer is a translation of fabric weavings into three dimensional stacks of interlocked platonic bodies. Both layers are in an uneasy, off-set relation with each other. On a meta level, the simulation of photographed space seduces to imagine this setup as an existing material reality.

Your rating: None


From this analysis emerged records of 18,520 sub-950-millisecond crashes and spikes — far more than they, and perhaps almost anyone, expected. Equally as striking as these events’ frequency was their arrangement: While market behavior tends to rise and fall in patterns that repeat themselves, fractal-style, in periods of days, weeks, months and years, “that only holds down to the time scale at which human stop being able to respond,” said Johnson. “The fractal gets broken.”

Your rating: None