Skip navigation
Help

Digital photography

warning: Creating default object from empty value in /var/www/vhosts/sayforward.com/subdomains/recorder/httpdocs/modules/taxonomy/taxonomy.pages.inc on line 33.
Original author: 
timothy

cylonlover writes "A team of scientists at Nanyang Technological University (NTU) in Singapore has developed a new image sensor from graphene that promises to improve the quality of images captured in low light conditions. In tests, it has proved to be 1,000 times more sensitive to light than existing complementary metal-oxide-semiconductor (CMOS) or charge-coupled device (CCD) camera sensors in addition to operating at much lower voltages, consequently using 10 times less energy."

Share on Google+

Read more of this story at Slashdot.

0
Your rating: None

First time accepted submitter BadassFractal writes "I'm in the market for a new large desktop monitor (or two) which I intend to use almost exclusively for programming and all sorts of software development-related work. I'm trying to keep the cost down reasonable, and I do enjoy as large of a resolution as possible. What do people 'in the know' out there use these days for that purpose? I'm thinking a 1920x1200 24" would be good, unless there's an affordable 2560xFoo option out there. I keep hearing about nameless Korean 27" screens, any thoughts on those?"

Share on Google+

Read more of this story at Slashdot.

0
Your rating: None


360 Video

Google Tech Talk January 4, 2013 (expand for more info) Presented by Tim Conway ABSTRACT GoPano plus uses a specially curved mirror. Its shape gathers light from all directions and reflects it into the lens of your camera. This single image/video shows everything in a 360° ring around the GoPano plus. On your computer, this warped image is transformed ("unwarped") into an interactive scene where anyone can control the view. Once you have the raw photos and/or videos, you'll need software to edit them. We provide PhotoWarp (for images) and VideoWarp Director (for 360° videos). Whether you're shooting 360° stills, panoramic videos, or both, we've got you covered. The GoPano plus has a standard 67mm photographic filter thread base which can be easily adapted to fit almost all the digital cameras, DSLR lenses, and camcorders. GoPano Step Rings can adapt any camera or lens with a filter thread to connect directly to the GoPano plus. SPEAKER INFO: Tim Conway (www.imdb.com Not to be confused with actor in the Dorf videos, Tim Conway has been creating, supervising, and creating unique technology in the field of Visual Effects and Post Production since 1997. His latest endeavor is a camera lens with an attached mirror which allows you to take 360 degree panoramic still images or video. This Tech Talk was presented at Google's LA office.
From:
GoogleTechTalks
Views:
1636

18
ratings
Time:
48:20
More in
Science & Technology

0
Your rating: None

Vexing Viewports

“The Web is Agreement.” Jeremy Keith’s eloquent statement neatly summarizes the balance that makes it possible for us to build amazing things. Each week, new devices appear with varying screen sizes, pixel densities, input types, and more. As developers and designers, we agree to use standards to mark up, style, and program what we create. Browser makers in turn agree to support those standards and set defaults appropriately, so we can hold up our end of the deal.

This agreement has never been more important.

That’s why it always hurts when a device or browser maker does something that goes against our agreement. Especially when they’re a very visible and trusted friend of the web—like Apple.

You see, Apple’s newest tablet, the iPad Mini, creates a vexing situation: Its device-width viewport tag defaults to the same values as Apple’s original iPad (768x1024 pixels), even though the Mini's screen is physically 40 percent smaller. That means every button, graphic, link, and line of text on a web page on the iPad Mini appears tiny—even when we try to do the right thing and build flexible, multi-device experiences.

Two iPads, one too small.

But Cupertino isn’t the only culprit out there. This is a problem that’s been brewing since we started using the viewport—and it has to do with not just pixels, but our own practices as well. Let’s take a step back and understand what’s really causing today’s woes—and what all of us need to do about it.

The trouble with pixels

Today’s viewport woes can be traced right back to pixels—yes, those tiny elements we work with every day.

The first pixel challenge is quantity. The more pixels in the display, the more information can be displayed. But as these are physical pixels whose number can’t be altered after the fact, a second factor comes into play: the screen’s physical size.

Imagine two two-inch-wide displays (about the width of the iPhone), as shown below.

Two devices, each with a two-inch-wide display. The one on the right, at 640x960, would pack four times as many pixels into the same space as the 320x480 screen on left.

The first is 320x480 pixels, the second 640x960. This gives the second display four times as many pixels as the first, but fits all of them into the same physical space. This smaller pixel size results in content that is also smaller—making it crisper, but much harder to read as well.

This is exactly what happened on the Nokia E60. In 2005, most mobile phone displays were about an inch and quarter wide, with an average of 176 pixels in that width. But the E60, which sported a “huge” 352x416-pixel display, crammed twice the number of pixels into a similar amount of space. The result: A gorgeous, crisp—but often hard-to-read—display.

The E60 also introduced a now-familiar problem: how users would manage to surf “big” sites on a tiny device. Nokia’s solution was a new browser, the Mini Map. This browser behaved similarly to today’s smartphone browsers by first rendering the full-sized page, then scaling it to fit the available screen size. Superimposed onto this rendering was a transparent red box that could be repositioned using the device’s joystick. Clicking the joystick would zoom the content indicated within the box.

Enter viewports

Mini Map was probably one of the first commercial uses of a dynamic viewport—a construct designed to dynamically change the size or scale of the visible screen area in order to improve the user experience. But it was far from the last.

In 2007, Apple released the iPhone, a much larger device than the E60, but one with a similar problem. Even on a “huge” two-inch display, surfing the “real web” on an iPhone meant loading large pages onto a small device. Apple chose to solve this problem through a series of carefully orchestrated enhancements.

The first was the creation of a virtual viewport similar to the one Nokia designed for Mini Map. When encountering desktop websites, the browser would render them at their full size (based on a default canvas width of 960 pixels). It would then scale them down to fit the two-inch display. Users could interact with the page to scroll and zoom in on areas of their choice.

Apple didn’t stop there. It also developed a new viewport meta tag. Sites not using the tag would be rendered using the default, legacy-web viewport of 980 pixels. But developers who opted to use the tag could declare the viewport for their sites, including setting the width to the all-important device-width value. This value tells the browser, “please pick a width that fits this specific device’s screen best.”

Other mobile browser vendors were quick to follow Apple’s lead. Nowadays just about every mobile browser supports the viewport meta tag, including the device-width value. This provides us with an even playing field: It respects the efforts of those who take the time to adapt sites for the multi-device web, while those who haven’t yet made this transition still receive a “good-enough” default experience.

Mini problems

The value device and browser vendors assign to device-width is directly related to that device’s physical dimensions. Physically smaller devices need a smaller device-width value (which will result in larger content). Set a value that’s too large, and most content will be too small to comfortably read.

And that’s why Apple’s iPad Mini has a vexing viewport. It uses the same 768-pixel device-width as the regular iPad, even though its physical size is much smaller. One would expect to see a device-width more in line with those of similarly sized tablets like the BlackBerry PlayBook or second-generation Samsung Galaxy 7″—around 500 to 600 pixels, as shown in this chart.

Because of this device-width, web pages appear 27 percent smaller on the iPad Mini than they do on the Google Nexus 7 (calculated based on the relative size of device pixels)—all because Apple decided to describe the device’s viewport as 768 pixels.

Solving for content size

One of the first places this causes problems is in text: More pixels in a smaller space means that fonts sized in pixels will look correspondingly dinky.

Of course, many of us aren’t sizing in pixels anymore—we’re using relative dimensional elements like ems, right? Only, that doesn’t quite solve the problem this time.

When we use ems, we imply a certain trust that the browser’s baseline font size at the default zoom level—1em or 100 percent in unit parlance—is sane and readable. But that’s not always the case. The browser’s baseline font-size value (1em) roughly equates to a 16-pixel square. This ratio serves as a ligament that binds absolute and relative units, but it can vary from browser to browser.

On the iPad Mini, font-size at baseline is precisely 16 pixels. That may have worked fine when fewer pixels were packed into our screens, but on a dense display with an improperly defined viewport, that’s going to be uncomfortably small.

Not all browsers toe the 1:16 em-to-pixel line, though. The Kindle Touch’s browser, for example, has a high-density viewport, but adapts by using a 1:20 ratio, kicking the default font size up a few pixels for readability.

This might not fix all of iPad Mini’s viewport problems, but at least the content would be legible.

Three seven-inch tablets. Note the difference in rendering.

So why did Apple do this?

To understand why Apple would release a product with such a vexing viewport, we don’t have to look further than our own habits.

In the wake of the iPad’s initial release, web folk worldwide scrambled to adapt sites to look good on the new tablets. Somewhere along the way many of us collectively settled upon pixel-based notions of tablet-ness, and those notions often resulted in fixed, 1024x768-pixel layouts precisely targeted at these devices.

Were Apple to decrease the device-width value for the iPad Mini on account of its smaller physical size, it would guarantee a second scramble as existing tablet-adapted sites assuming a 1024x768 viewport suddenly looked unexpectedly wretched on the new device.

The responsibility here goes two ways. Browser makers need to provide reliable baselines of viewport and text sizing, yes. But we as implementers also need to stop grasping for pixel-perfect control over our layouts (the “control” is an illusion, anyway).

A way forward

The only way for us to move forward is together. As developers and designers, we need to hold up our end of the bargain and be mindful of how we do our work—and that means letting go of the notion of pixel precision once and for all. We need to earn the trust of browser makers so they hear us out when things just frankly aren’t right. We hope this article illustrates we’re trying to do the right thing. We hope browser makers acknowledge that and follow suit.

Standards and consistency are more important now than ever before. Please let browser makers and device manufacturers, like Apple, know that we rely on consistent and reliable decisions about default viewports and their zooming. We’re willing to hold up our end of the agreement, and we need them with us.

Let’s move into the future—together.

RSS readers: Don't forget to join the discussion!

0
Your rating: None

 Sony Cybershot DSC-RX100 hands on pictures

Pont and shoot camera enthusiasts have been pitched to no end on the merits of massive megapixel counts and generous optical zoom lengths, so Sony's new Cyber-shot DSC-RX100 aims to add yet another metric to that perpetual arms race: sensor size. At the camera's heart is 20.2-megapixel 13.2 x 8.8mm Exmor CMOS sensor, which Sony claims is four times larger than those normally available in point-and-shoot cameras. We had an opportunity to get a bit of hands on time with the Cyber-shot DSC-RX100, and while we weren't allowed to capture any sample images — we were told the cameras weren't production quality just yet — we did get a chance to fiddle with some of the improvements.

Sony is calling the DSC-RX100 the most advanced point and...

Continue reading…

0
Your rating: None

Fujifilm X-Pro1 hero (1024px)

Fujifilm has a history of making beautiful cameras, particularly in its X series. The X100 and X10 are more than just pretty faces, too — both deliver gorgeous pictures and video. They're designed more as companions to a DSLR rather than your one and only camera, though, and the entry price is high for that kind of camera. In January at CES, Fujifilm stole the show by releasing a camera that could be your one and only: the X-Pro1, which pairs the company's flair for retro design with interchangeable lenses.

Technically speaking, there's a lot to like about the camera in addition to its lens mount or its good looks: a 16-megapixel APS-C X-Trans sensor that Fujifilm claims could rival many full-frame DSLRs, ISO range up to ISO 25,600, a...

Continue reading…

0
Your rating: None

via cdn2.sbnation.com

Samsung has said that it's going to put more of a focus on its interchangeable lens cameras, and the company has just shown us its refreshed NX series: the DSLR-like NX20, the rangefinder-styled NX210, and the diminutive NX1000. All three of the cameras now feature 8fps continuous shooting and a maximum ISO of 12,800, and they all share the same Samsung-developed and Samsung-built 20.3-megapixel APS-C CMOS sensor. That sensor is similar to what you'd see in a prosumer DSLR or Sony's NEX series of cameras, and the latter is the Samsung NX series' primary competition — both are trying to present compelling arguments to customers who are looking for more than a smartphone camera (something that's now replacing many point-and-shoots) and...

Continue reading…

0
Your rating: None