Skip navigation
Help

Inspiration

warning: Creating default object from empty value in /var/www/vhosts/sayforward.com/subdomains/recorder/httpdocs/modules/taxonomy/taxonomy.pages.inc on line 33.
Original author: 
Joseph Alessio

  

In the first installment of this two-part series on type classification, we covered the basics of type classification — the various methods people have used, why they are helpful, and a brief survey of type history, classifying and identifying typefaces along the way. Unfortunately, we only got as far as Roman (traditional serif) typefaces and the early-19th century. Now we’re back for part 2!

Part 2 will primarily cover sans typefaces, with a nod to display typefaces and other less common categories, as well as address a few of the questions people have about whether type classification is helpful and necessary.

If you haven’t read part 1, now’s your chance to go over it. It lays important groundwork for this article, covers the categories of serif typefaces, and contains plenty of useful information about the development of serif type. If you already have read it, here is a quick recap to get us started before we move on to the new material.

type classification

Review

Type Classification Systems

Type has been classified in many ways over the years, both formal and informal — Thibaudeau, Vox, British Standards, etc. None of these are complete or all-encompassing, but they’re helpful as an aid to study as well as for learning to use type correctly and effectively. The material in this two-part series draws heavily from the Vox-ATypI system, which is the most “official” of the systems today, having been adopted by the Association Typographique Internationale in 1962 and still the most commonly referenced system.

Is it perfect? No, but it provides a good overview of what is out there; and when you describe typefaces using the terms you’ll learn in this series, anyone who is reasonably familiar with typography will know what you’re talking about.

Here is a quick overview of the type categories we covered in part 1.

Humanist/Venetian

Venetian Typeface Characteristics

  • Notable calligraphic influence, patterned after handwriting.
  • Strongly angled axis or stress.
  • Based on typefaces designed in Renaissance cultural hubs such as Venice.

Garalde

Oldstyle Typeface Characteristics

  • Less calligraphic influence because type began to be viewed as separate from writing.
  • Named after influential type designers Claude Garamont and Aldus Manutius.
  • Still has a tilted axis but less obvious than in Humanist type.

Transitional/Neoclassical

Transitional Characteristics

  • No calligraphic influence. Designed independently, sometimes on a grid.
  • First appeared in the late-17th century.
  • Virtually vertical axis and high contrast between heavy and thin strokes.

Didone

Didone Characteristics

  • Extreme contrast between thick and thin. Rigidly vertical axis.
  • Abrupt, or unbracketed, serifs. Very precisely designed.
  • Named after Firmin Didot and Giambattista Bodoni.

Slab Serif

Slab Serif Characteristics

  • Very heavy weight and low contrast between thick and thin.
  • Unbracketed, prominent serifs.
  • First typefaces created expressly for display purposes.

Sans Serifs

When we left off in part 1, it was circa 1815, with the first appearances of slab serifs, also called Mechanistics or Egyptiennes. By the time slab serifs were being popularized, early sans serifs had already been around for some time in a variety of forms. To follow the progression of sans serifs, we must step back in time a number of years.

History of Sans Serifs

The earliest sans-serif letterforms were, of course, not type, but inscriptions, dating back to as early as the 5th century BC, and enjoyed a resurgence in engraving and inscriptions in the 18th century.

etruscan type
Caslon’s Etruscan type, as seen in a 1766 specimen book. Larger view. (Image source: Typefoundry)

Strangely enough, the first “sans serif” type was created not for the Latin alphabet, but for use in 18th-century academic works on Etruscan culture, which preceded the Roman Empire in the geographical area of modern-day Italy. Circa 1748, the foundry of William Caslon (with whom you should be familiar) cut the first known sans-serif Etruscan type for the Oxford University Press, although there are earlier usages of sans serifs in similar applications.

Embossed Type
Haüy’s type, created to emboss pages so as to be read by touch, was oddly ornate for its purpose. Larger view. (Image source: Camille Sourget)

Another interesting typographic innovation was the work of Valentin Haüy, who founded a school for blind children in 1785. In 1784, a year of preparation during which he devoted himself to educating a single student, Haüy developed an embossing typeface with which to make tactile books. The typeface, which, along with his method, is called the Haüy System, is an early form of sans serif, but it reads more like an upright italic or a disconnected script.

It was first embossed and then often carefully inked over the top so that it could also be read visually, as in the photo above. It looks lovely, but was superseded in both practicality and readability by the system devised by Louis Braille, himself a student at the school Haüy founded.

Caslon Sans
William Caslon IV’s sans serif was categorized as “Two Lines English Egyptian,”. (Image source: typophile)

William Caslon IV — who inherited the type foundry, as well as his name, from four generations back — is credited with the first sans-serif printing type for the Latin alphabet, appearing first in the 1816 Caslon specimen book. It featured only capitals and was marketed as “Two Lines English Egyptian,” the “Two Lines” being a reference to the size of the set type. There was much confusion over this new style, being variously called Egyptian (despite early slab serifs also being marketed as Egyptians), Gothic, Grotesque and Antique, among others.

Figgins Sans Serif
A sans from an early Vincent Figgins type specimen. Larger view. (Image source: Typefoundry)

Eventually Vincent Figgins (whom you may remember as being credited with the first slab-serif type) called the new style “sans serif,” which became the widely accepted term, although you’ll see many of the old terms in use on some typefaces.

Classifying Sans Serifs

At first glance, you might think that sans serifs can’t be classified the way that serifs can, since fewer variables are apparent in the ones we see most often. However, plenty of details can aid specificity when discussing, using and pairing typefaces, even within the broader category of sans serifs or, as Maxmilien Vox termed them, “linéales.” Subcategories were implemented by the British Standards classification, a permutation of Vox’s system, and they provide excellent means of discerning characteristics. I am presenting here a slight variation of those four, with a couple of minor differences for the sake of practicality.

Grotesque

The Grotesque category covers the early sans serifs, specifically those designed in the 19th century and the first decade or two of the 20th. Many of these typefaces had only capitals or exist only in centuries-old specimen books, but a number of them are still quite commonly used. These typefaces tend to be very idiosyncratic, with awkward weight distribution around bowls of characters and irregular curves.

Monotype Grotesque
(Image source: MyFonts)

Monotype Grotesque (above, 1926), based on Berthold’s much earlier Ideal Grotesque (1832), is an excellent example of the quirks commonly evident in Grotesques. Note the awkward “a” and “g,” the squarish bowls, the odd curves and angles at the tips of strokes in the “J” and “S,” and the overall irregularity.

The capital G in a Grotesque is usually spurred, and the British Standards specifies a curled leg on the capital R, although that is not apparent in many typefaces of the period. They tend to display some variation in the thickness of strokes, but the contrast does not show calligraphic influence or a logical pattern. The style became more sophisticated over the course of the 19th century. Perhaps the finest sample of this category appeared in the Berthold Type Foundry’s 1896 release of Akzidenz-Grotesk, which, along with Schelter Grotesk (1886), served as an archetype for many Neo-Grotesques, most notably Neue Haas Grotesk and Univers.

grotesque

Interestingly enough, it has been postulated that Akzidenz-Grotesk was based on Walbaum or Didot. Despite looking extremely different at first glance, a simple comparison of the basic forms shows that the metrics are very similar.

Examples of the Grotesque category include Franklin Gothic, Monotype Grotesque and Schelter Grotesk.

Neo-Grotesque

The Neo-Grotesques, also called Transitionals or Realists, include many of the most commonly used sans. They are based on the later Grotesques and take the design of the sans-serif to a new level with their careful construction and aesthetics. They are much more refined than the Grotesques, during which period type designers were still feeling their way around the new style; thus, the Neo-Grotesques lose many of the awkward curves and idiosyncrasies that are common in earlier sans serifs. You’ll see much less variation in line weight, and most often a single-story “g.”

neo-grotesque

Created with an emphasis on neutrality and simplicity, they were extraordinarily popular among the Modernists and remain popular today. Despite many claims otherwise, simplicity does not directly translate into legibility: A tight vertical rhythm and pinched apertures keep many Neo-Grotesques (including Helvetica) from being good choices for body text. In fact, in the 2013 edition of the DIN 1450 (the German standards on legibility in typefaces, published by the Deutsches Institut für Normung), Helvetica is used as a negative standard. That’s an entirely different topic, however.

In 1957 — a big year for Neo-Grotesque sans serifs, as Frutiger’s Univers as well as Folio (originally thought to be a stronger competitor, although history has proved otherwise) were released — Haas Foundry released Max Miedinger’s Neue Haas Grotesk, which drew heavily on Schelter and Akzidenz Grotesks. In 1960, Haas, in an effort to market it more effectively, rebranded Neue Haas Grotesk to what we know as one of the most ubiquitous typefaces of all time — you guessed it — Helvetica.

helvetica specimen
Many people love Helvetica so much that they’ll hang prints of vintage Helvetica specimens as decoration. (Image source: etsy)

The quintessential members of this group are, of course, Univers and the immortal Helvetica, which has gone through quite a number of permutations over the years (as have all of these typefaces) and was recently revived by Christian Schwartz as a rerelease of Neue Haas Grotesk. A nice informational minisite was created by Indra Kupferschmid and Nick Sherman for the release. Other typefaces in this category include the DIN 1451 and its derivatives, and Bell Gothic and its successor Bell Centennial.

Humanist

If you remember the most important quality of Humanist serif type, you’ll be relieved to learn that the same quality carries over to the sans serifs! The primary characteristic of Humanist type, both serif and sans serif, is a strong calligraphic influence, basing its shapes and flow on forms that could originate from a pen or brush. This means a much higher stroke contrast, and some Humanist sans even feature some stress, whereas nearly all other sans serifs have a completely vertical axis.

Another interesting characteristic of Humanist sans serifs is that their proportions often derive largely from Roman inscriptions and early serif typefaces, rather than 19th-century sans serifs as the Neo-Grotesques did. Because of this design process involving older letterforms, the lowercase “a” and “g” are most often two-story in Humanist sans serifs. All of these characteristics combine to make most Humanists a more legible choice than other types of sans faces.

Humanist Sans (Optima)

Hermann Zapf’s Optima is one example that clearly shows the calligraphic heritage, with an unusually obvious difference between thick and thin strokes, while many others in this category have more subtle features. The Humanist sans group includes classics such as Gill Sans and Frutiger as well as more recent releases like Myriad (1991), Trebuchet (1996) and Calibri (2005).

Geometric

Geometric sans serifs are exactly what their name suggests. Instead of being derived from early Grotesques, like a Neo-Grotesque, or from calligraphic and engraved forms like the Humanist sans, they are built on geometric shapes. The characters often have optically circular bowls and are otherwise typically very rectangular, sharing many components between the various glyphs.

Erbar Grotesk
Erbar’s small x-height, among other factors, renders it difficult to read. Larger view.

Jakob Erbar, whose eponymous typeface is credited as being the first Geometric sans, reportedly based his construction on the circle. Released in the 1920s, Erbar-Grotesk was intended to be legible. Ironically, because of the awkward visual rhythm, resulting from strict adherence to geometric forms, Geometric lineals are among the least legible of sans serifs and are usually suitable only for display type. Geometric sans serifs usually show little or no stroke contrast and usually feature a single-story lowercase “a.”

Geometric Sans

Paul Renner’s Futura, Koch’s Kabel and Lubalin’s Avant Garde are typical examples of the style. H&FJ’s Gotham is also a Geometric sans, although it is less strictly geometric than some and allows for more variation in the heavier weights.

The Rest Of The Story

That’s the basic classification for sans serifs! While the two parts of this series primarily deal with serif and sans type, there are many other styles to consider. The Vox-ATypI system also provides five subcategories of “calligraphics” (i.e. type that is derived from handmade letters), but as they are largely self-explanatory, I won’t dedicate much space in this already lengthy article to them. Here is a brief summary of each category.

Scripts

Script Metal Type
A case of script metal type. (Image source:
Etsy)

Scripts are, of course, typefaces based on handwriting, particularly formal scripts. The letters often connect, but not necessarily so. They range from the very formal — Matthew Carter’s Snell Roundhand, named after the author of a 1694 booklet on penmanship, originally released in 1966 — to the very casual — Ashley Havinden’s eponymous Ashley Script, from 1955.

Glyphic

Trajan Inscription
Carol Twombly’s Trajan was based on this inscription at the base of Trajan’s Column in Rome.

Glyphic typefaces are those derived from engraved or chiseled letters. Many of these typefaces look like they could be classified as serifs but are based on the work of a chisel, rather than having gone through the traditional design process and referencing the stroke of a pen. As such, Glyphics, also called “incised” typefaces, sometimes contain only capitals, and the serifs tend to be small, as a natural detail of the chiseling process rather than as a design feature. Trajan and Friz Quadrata are excellent examples of this style.

Graphic

Graphic Wood Type
Graphic wood type from the extensive Hamilton Wood Type collection.

Graphic is essentially a sort of catch-all label for display type that doesn’t fit into any other category. It includes anything that would be drawn or designed, with a brush, pen or any sort of tool. If it’s not exactly a sans, not exactly a serif, and you’re not really sure what it is, it is most likely a Graphic typeface!

Blackletter

Gutenberg Bible
Gutenberg printed with type designed to mimic the late-medieval Fraktur style of handwriting. (Image credits: JMWK)

Blackletter type began with Gutenberg and was used in printing, even printing body text, until the early- to mid-20th century in Germany. It is based on a medieval scribal hand, written with a broad-nib pen, and differs from graphic typefaces and scripts in that it has been used at length in body text. It has a very dense type style. When the traditional style that Gutenberg had used began to give way to the more readable early serifs (the Humanist/Venetian designs of Aldus Manutius and his colleagues), printers called the new style “Whiteletter,” in reference to the negative space-to-ink ratio on the page; thus, the old type was termed Blackletter, and we still use this term today.

Gaelic

Gaelic Type
Gaelic type includes the Latin alphabet as well as some additional glyphs. Larger view. (Image source: mathewstaunton)

Gaelic type is based on the insular script found in manuscripts throughout the UK. As with Blackletter, it has been used in printing body text in Ireland, from its earliest appearances in the 16th century all the way through to the mid-20th century, but is no longer popular as a text typeface. The Vox-ATypI system was amended to include the Gaelic category in 2010 at the ATypI annual conference, appropriately held in Dublin.

Non-Latin Type

Beyond that, there is still another world of type to discover. The entirety of these two articles on the subtleties of type (and, believe me, it can get much more complicated!) have discussed only the Latin alphabet, which, while quite commonly used, is merely one of many writing systems used today. I encourage you to learn more about, and get involved in, the typography of other writing systems! Some are very widespread and used daily by hundreds of millions of people; others are used by mere thousands.

Regardless of how many people use it, each writing system needs quality typefaces. From the commonly used (check out Nadine Chahine’s interview on Arabic type) to the rarely seen (Jean-Baptiste Levée gave a fascinating talk at last year’s TypeCon on creating Air Inuit Sans, supporting Inuktitut glyphs), the typography of non-Latin writing systems promises an exciting future.

Closing Remarks

We’ve barely scratched the surface of the fascinating subject of typography and type history in this two-part series “Making Sense of Type Classification.” Hopefully, it has piqued your interest in this intriguing field. Knowing your way around the typographic resources available to today’s designers is essential, and it is helpful to understand a little behind the characteristics, history, visual character and idiosyncrasies that make each typeface unique and that define how it communicates.

At one point in the history of Web design, an extensive knowledge of type history was unnecessary because a Web or interactive designer was limited to half a dozen typefaces, and those in limited weights and variants.

Today, however, the landscape of Web design is completely different, and the typographic possibilities are endless! Also, while this material is covered in many design schools, a significant portion of designers today haven’t had a formal design education, so now is the best time to catch up!

That being said, we also must remember that, while type classification is an important aid to studying type, it is not a hard and fast system that cannot be questioned. Many typefaces combine characteristics and could easily fit into multiple categories, and no classification system can cover all of the possibilities. In the end, type classification is an excellent means of learning to recognize common patterns and distinguishing characteristics of typefaces, and we get to learn some type history along the way.

With this short series, you’re now equipped with a strong knowledge of categories of type; you’ve learned to analyze typefaces and pick out unique aspects of letterforms; you’ve seen how type has evolved with culture; and, most importantly, you have a solid foundation for further study of typography and type history! It cannot be overstated how immensely important sound knowledge of typography is for anyone in the broad field of design, and the material we’ve covered here will serve you well in navigating the world of type.

(al) (ea)

© Joseph Alessio for Smashing Magazine, 2013.

0
Your rating: None

  

Many of us care deeply about developing our craft. But staying up to date can be a true challenge, because the quantity of fresh information we’re regularly exposed to can be a lot to take in. 2012 has been no exception, with a wealth of evolution and refinement going on in the front end.

Great strides have been made in how we approach workflow, use abstractions, appreciate code quality and tackle the measurement and betterment of performance. If you’ve been busy and haven’t had time to catch up on the latest developments in these areas, don’t worry.

With the holiday season upon us and a little more time on our hands, I thought it would be useful to share a carefully curated list of the most relevant front-end talks I’ve found helpful this year. You certainly don’t have to read through them all, but the advice shared in them will equip you with the knowledge needed to go into the new year as a better front-end engineer.

Screenshot
Image credit: Jacob Bøtter

Baseline

Have a Strategy for Staying Up to Date

How to Stay Up to Date on Web Stuff, Chris Coyier

Part of continually developing your craft is staying up to date. Doing this is important for all professionals, and in this talk you’ll learn strategies for staying updated even when the ideas that surround the technologies we use are constantly evolving.

Screenshot

Make Sure Your Baseline for Development Is Current

A New Baseline for Front-End Developers, Rebecca Murphey

There was a time when editing files, testing them locally and simply FTP’ing them was the common workflow for a front-end developer. We would measure our abilities based on how well we could harass IE 6 into rendering pages correctly, and we generally lacked strong skills in HTML, CSS and JavaScript.

This has greatly changed over the past few years, with improvements in workflow and tooling. Front-end development is now taken more seriously, and this talk sheds light on the new baseline process for developing on the front end.

Screenshot

Understand How Browsers Work Behind the Scenes

So, You Want to Be a Front-End Engineer, David Mosher (Video)

Some would say that the browser is the most volatile development platform the world has ever known. If you’re a client-side developer, understanding how browser internals work can help you both make better decisions and appreciate the justifications behind many development best practices. In one of the best talks this year, David Mosher takes you through how browsers parse and render your pages.

Screenshot

Know What the Web Platform Now Has to Offer

The Web Can Do That!?, Eric Bidelman (Video)

The Web is constantly evolving, and keeping up with what’s new on the platform can be hard. HTML5’s new capabilities enable us to build an entirely new suite of applications with features that were simply impossible to achieve before (at least, not without the use of plugins) but are now a reality.

In this talk, my teammate Eric guides you through the bleeding edge of HTML5, focusing on solving many real-world problems. You’ll learn about media streaming, device input, modern CSS design, media capture, file I/O and more.

Screenshot

Workflow

For Web App Developers

Tooling for the Modern Web App Developer, Addy Osmani

Whether you’re using JavaScript or CoffeeScript, LESS or Sass, building an awesome Web application these days usually requires a plethora of boilerplates, frameworks and tools and a lot of glue to get them to work together. In short, you need a kick-ass utility belt.

In this talk, you’ll get an overview of the current tooling eco-system for the front-end and learn about a new tool that tries to bring together all of the pieces of this eco-system for you, called Yeoman.

Screenshot

An extended version of this talk is also available.

For Web Designers

A Modern Web Designer’s Workflow, Chris Coyier (Video)

A lot is expected from today’s Web designers. If this role defines what you do, then it’s now not just about visual design, but increasingly about building interactions. Designs need to work across different devices of varying shapes, sizes and connections, and they also need to be accessible.

As a designer, you often need to communicate and share code across teams and be familiar with many different technologies. In this talk, Chris Coyier discusses many of the amazing tools that can help things along, discussing what does what and giving a high-level view of a modern workflow.

Screenshot

For Mobile Web Developers

Mobile Web Developers Toolbelt, Pete Le Page (Video)

Building for the mobile Web requires a different mindset to the one we use when developing for desktop, and a different set of tools. Thankfully, a number of great options are available. From remote debugging to emulation, mobile browsers are offering more and more tools to make our lives easier.

In this talk, Pete Le Page takes you through a couple of tools that you can use today to make cross-platform mobile Web development easier, and then he peers into the crystal ball to see what tools the future may bring.

Screenshot

For Debugging

Secrets of the Chrome DevTools, Patrick Dubroy (Video)

Google Chrome Developer Tools provide powerful ways to understand, debug and profile Web applications. Most developers are familiar with Chrome’s basic inspection and debugging tools, but some of its most valuable features, like the Timeline and memory analysis tools, are less known.

In his demo-based walkthrough, Patrick Dubroy provides an overview of Chrome Developer Tools and an in-depth demonstration of some lesser-known features.

Screenshot

The Future

CSS

The CSS of Tomorrow, Peter Gasston

In this talk, Peter looks briefly at the state of CSS3: what you can do right now, and what you’ll be able to do in the very near future. He then looks into the long-term future, to a time when CSS3 will make possible page layouts far richer and more dynamic than we’d thought possible, and when CSS3 has taken on aspects of programming languages. This is effectively what CSS developers will be learning years from now.

Screenshot

JavaScript

The Future of JavaScript, Dave Herman

The Web platform is growing, and JavaScript is growing along with it. EcmaScript 6, the next edition of the JavaScript standard, is gearing up to be a huge step forward for Web programming. In this talk, Dave Herman discusses the exciting new features being worked on for EcmaScript 6 and how they can be used.

Screenshot

Web Applications

Web Components and the Future of Web App Development, Eric Bidelman

Web components are going to fundamentally change the way we think, build and consume Web apps. ShadowDOM, Mutation Observers, custom elements, MDV, Object.observe(), CSS — how do they all fit together?

This talk prepares you for the future of the Web platform by discussing the fundamentals of Web components and how we can use them today with frameworks such as AngularJS.

Screenshot

CSS

State of the Art

All the New CSS Hawtness, Darcy Clarke

This talk dives into some of the latest CSS implementations and specifications floating around. You’ll learn what’s here and what’s around the corner, and you’ll gain insight into why these new features will change our development workflow.

Darcy Clarke touches on modules such as paged-media, multi-columns, flex-box, filters, regions, box-sizing, masking and 3D.

Screenshot

Modularity

Your CSS Is a Mess, Jonathan Snook

We all think that CSS is easy. Take some selectors, add some properties, maybe a dash of media queries, and — presto! — you have a beautiful website. And yet, as the project changes and the team grows, we see the frustration build, with increasingly complex selectors and overuse of !important.

In this talk, Jonathan looks at common problems and solutions that will make your CSS (and your projects) easier to manage and easier to scale.

Screenshot

Pre-Processors

CSS Pre-Processors, Bermon Painter

If you haven’t jumped on the pre-processor train this year, you’re missing out. In this helpful overview of (current) popular pre-processors, Bermon Painter takes you through Stylus, LESS and Sass, with features subdivided into easy-to-learn sections of beginner, intermediate and advanced. I’ve been using mixins quite heavily this year, and I simply wouldn’t have been able to if it weren’t for projects like Sass.

Screenshot

Documentation

A Better Future With KSS, Kyle Neath

Writing maintainable CSS within a team is one of those problems that a lot of people think can be solved by writing CSS in a particular style. But in Kyle’s experience, that never works out.

In this talk, he introduces you to his latest creation, KSS. It’s a documentation and style guide format. He’ll show you why he built KSS and how it’s been helping him at GitHub to refactor its four-and-a-half year old CSS, and he’ll give you a glimpse into the future of KSS.

Screenshot

JavaScript

The Importance of Code Style

Maintainable JavaScript, Nicholas Zakas

Some say that good code is its own documentation, and the fact is that the more readable our code is, the easier it is to maintain.

Writing JavaScript for fun and writing it professionally are two different things, and in this talk by Zakas, you’ll learn practices to make JavaScript maintainable over the long run, to reduce errors and to make your code easily adaptable to future changes. It’s highly recommended reading.

Screenshot

A Modern Large-Scale App Stack

SoundCloud’s Stack, Nick Fisher

I’ve talked a lot about large-scale development in the past. It’s a non-trivial problem that’s difficult to get right, and so it’s exciting when someone working on such challenges shares their experience.

In this talk, Nick Fisher of SoundCloud discusses the company’s story of developing large-scale applications with JavaScript, not only at runtime, but also its steps to make development and deployment easier. In particular, he looks at RequireJS and Backbone, talking about how SoundCloud has used and abused each to suit its needs, sometimes in uncommon ways.

Screenshot

Rethinking Application Structure

Re-Imagining the Browser With AngularJS, Igor Minar

What if you could a write modern Web app with dramatically fewer lines of code and improve its readability and expressiveness at the same time? In case you’re wondering: no, there’s no new language to learn, just familiar old HTML and JavaScript. As a matter of fact, there are concepts for you to unlearn.

AngularJS is a client-side JavaScript Web development framework whose authors believe they’ve done something special. Instead of asking what kind of functions they could provide to make writing apps smoother, they asked, “What if the browser worked differently in a way that eliminates code and gives structure to apps?”

In this talk, you’ll get a tour of how to get the power of tomorrow’s Web platform in today’s Web applications.

Screenshot

Internationalization and i18n

Entschuldigen you, parlez vouz JavaScript, Sebastian Golasch (Video)

While JavaScript applications grow in size and complexity, there are still some white spots on the big map of Web applications: internationalization and globalization! If you´re still thinking that switching strings in and out is the way to go, you are definitely headed in the wrong direction.

In this talk, Sebastian takes you through how to spot real-world internationalization problems and how to solve them in the most elegant way.

Screenshot

I couldn’t cover internationalization without mentioning Alex Sexton, who has also spoken a great deal on this topic. His JSConf talk on client-side internationalization is available in video form if you’re interested in checking it out.

Patterns and Principles

The Plight of Pinocchio, Brandon Keepers

JavaScript is no longer a toy language, and many of our Web applications can’t function without it. Brandon states that if we are going to use JavaScript to do real things, then we need to treat it like a real language, adopting the same practices that we use with real languages. I completely agree with him.

This framework-agnostic talk takes a serious look at how we develop JavaScript applications in the real world. Despite their prototypical nature, good object-oriented programming principles are still relevant. The design patterns that we’ve grown to know and love work just as well in JavaScript as they do in any other language.

Screenshot

When to Lazy Load Scripts

How Late Is Later?, Massimiliano Marcon

Reducing the loading time of a Web application is a well-known challenge. Developers need to make sure that the browser downloads only the code that is strictly necessary to bootstrap the application, and leave the rest for later. This is what we commonly call “lazy loading.”

But when is “later”? When is the right time to lazy load? This talk shows how JavaScript code — functions and objects — can be delivered to the browser on demand, thus reducing the perceived loading time of a Web application.

Screenshot

Mobile

Building Touch-Based Interfaces

Creating Responsive HTML5 Touch Interfaces, Stephen Woods (Video | Audio)

Flickr front-end engineer Stephen Woods shares some hard-learned lessons about building responsive touch-based interfaces using HTML5 and CSS. Because our users are demanding better instant feedback from touch-based UIs, understanding how to approach this problem and avoid the pitfalls will be critical for many application developers in the future.

Screenshot

The Challenge With Scrolling

Embracing Touch: Cross-Platform Scrolling, Mark Dalgleish (Video)

Scrolling effects are a popular way to add personality to the simple act of moving down the page. Unfortunately, these effects don’t work natively on mobile devices, where the touch interaction would make these techniques more effective. In this talk, Mark looks at some ways to implement these effects within the limitations of mobile browsers.

Screenshot

Native, HTML5 and Hybrid Apps

Native, HTML5 and Hybrid Mobile Development, Eran Zinman

One of the toughest decisions every mobile developer faces is choosing a development strategy: “Should I develop a native, HTML5 or hybrid mobile app?” Over the past two years, Eran has led Conduit’s mobile client development efforts, experimenting with cross-platform development in various flavors: from complete HTML5 solutions (using PhoneGap and other technologies) to hybrid solutions to semi-hybrid solutions to fully native solutions.

In this talk, Eran shares some real-life experiences in cross-platform development, describing changes that Conduit has implemented along the way, and sharing what some of the “big players” (such as Facebook, LinkedIn and Twitter) are doing in their mobile app development.

Screenshot

Performance, Distribution and Facebook on HTML5

On the Future of Mobile Web Apps, Simon Cross

Simon looks at Facebook’s experience with and investment in the mobile Web, the issues affecting mobile Web developers and what Facebook and the industry are doing to push the mobile Web forward. Mark Zuckerberg’s comments on HTML5 were undoubtedly one of the most discussed topics in mobile this year, and I personally found these slides a good summary of Facebook’s current take on what works and what still requires improvement.

Screenshot

Tools for Mobile Debugging

Mobile Debugging, Remy Sharp

Debugging Web apps on mobile devices can be a genuine pain. Luckily, a number of tools are available today to ease the process. From remote debuggers to cross-device consoles, this talk summarizes the current state of debugging for mobile, going into more depth on debugging than Pete’s talk from earlier in the post.

Screenshot

Responsive Design Techniques

Responsive Web Design: Clever Tips and Techniques, Vitaly Friedman

Responsive Web design challenges designers to apply a new mindset to their design processes and to the techniques they use in design and coding. This talk (by Smashing Magazine’s own Vitaly Friedman) provides an overview of various practical techniques, tips and tricks that you might want to be aware of when working on a new responsive design project.

Screenshot

Web Apps

Offline Web Apps

Offline Rules, Andrew Betts (Video)

In the last couple of years, a deluge of new offline storage technologies have appeared. In this talk, Andrew looks at why they are all excellent and rubbish at the same time and why you need to use all of them, and he walks through techniques to consider when building a Web application that can load and function with no network connectivity.

But making use of client-side storage is necessary not only in order to make an app that works offline, but it can also hugely improve the experience of your website when the user actually does have connectivity.

Screenshot

State of the Art

Building Web Apps of the Future: Tomorrow, Today and Yesterday, Paul Kinlan (Audio)

The browser is an amazing runtime that can already deliver amazing apps. Paul dives into the technologies that will help you deliver Web apps that will blow your users’ socks off now and in the future.

Screenshot

Client-Side Storage

Storage in the Browser, Andrew Betts

Installed native applications can use all the space they want, but in the browser we’re much more limited. This talk explores how to make the best use of the storage technologies available to Web apps, comparing the virtues of different packaging and encoding techniques, and covering simple forms of in-browser compression that can yield surprising results.

As more apps are developed to surf over network turbulence, and to work even when completely disconnected from the network, local storage becomes ever more important.

Screenshot

Application Cache

Application Cache: Douchebag, Jake Archibald (Video)

The Application Cache is one of the cool bits of HTML5. It allows websites to work without a network connection, and it brings us much closer to native app-like behavior. However, from roundup articles and talks about HTML5, you might be left with the impression that it’s a magic bullet. Unfortunately, it isn’t; the Application Cache is, as Jake famously puts it, a douchebag.

In this talk, he looks at how to use the features of Application Cache without the horrible side effects, comparing techniques that you’d use for both a simple client-side app and a large content-driven website. He explores the many gotchas left out of most articles about Application Cache and discusses how to build your website to survive them.

Screenshot

Performance

CSS

High-Performance CSS, Paul Irish

Paul dives into the tools available in and outside of the browser to assess the performance of your CSS. Find out what’s slow (is box-shadow causing paints to be 70 milliseconds longer?) and how to fix it. Learn about about:tracing, CSS profiling and speed tracer, and get a better understanding of the browser’s internals in the process.

Screenshot

There’s also Jon Rohan’s talk about some problems related to CSS performance that were solved at GitHub. Recommended reading.

GitHub’s CSS Performance, Jon Rohan

Screenshot

Avoiding Jank

Jank-Free: In Pursuit of Smooth Web Apps, Tom Wiltzius

Building beautiful experiences on the mobile Web takes more than a good designer and fancy CSS: performance is critical for a Web app to feel fluid. Smooth animation that never drops a frame can give your app a native feel. But when animations stutter, effects lag or pages scroll slowly, we call that “jank.” This talk is about identifying jank and getting rid of it.

Screenshot

Web

Building Faster Websites, Ilya Grigorik

In this comprehensive crash course, Ilya Grigorik shares some really juicy tips on how to make the Web faster, including Google’s findings on what slows down people’s Web experience and how Chrome and other services have improved it. If you’re an engineer looking to improve the performance of your websites or apps, this talk comes highly recommended.

Screenshot

JavaScript

Breaking the JavaScript Speed Limit With V8, Daniel Clifford

Are you interested in making JavaScript run blazingly fast? If so, this talk looks at V8 under the hood to help you identify how to optimize your JavaScript. Daniel shows you how to leverage V8’s sampling profiler to eliminate performance bottlenecks and optimize JavaScript programs. He also exposes how V8 uses hidden classes and runtime-type feedback to generate efficient JIT code. A very interesting talk for performance junkies.

Screenshot

Note: Some of the optimizations mentioned in this talk are specific to V8 and may not apply to other JavaScript engines. I wrote about how to write memory-efficient JavaScript on Smashing Magazine recently, in case you’re interested in exploring the topic further.

Testing

Understanding Code Smells

Why Our Code Smells, Brandon Keepers (Video)

Odors exist for a reason, and they are usually trying to tell us something. If our code smells, it might be trying to tell us what is wrong.

Does a test case require an abundance of setting up? Maybe the code being tested is doing too much, or it is not isolated enough for the test? Does an object have an abundance of instance variables? Maybe it should be split into multiple objects? Is a view brittle? Maybe it is too tightly coupled to a model, or maybe the logic needs to be abstracted into an object that can be tested?

In this talk, Brandon walks through code from projects that he works on every day, looking for smells that indicate problems, understanding why the smells are there, what the smells are trying to tell us, and how to refactor them.

Screenshot

Current State of the Art

JavaScript Testing: The Holy Grail, Adam Hawkins (Video)

Adam talks about this Holy Grail for JavaScript developers: getting a test suite up and running fast and having multiple browsers execute the tests. Getting the Holy Grail is difficult, though, even though several tools have been created in the past in attempts to solve this problem.

Barriers to entries are everywhere. How easy is it to get going testing small parts of JavaScript functionality? What happens as your become bigger and more complex? What about headless testing? Does this process scale up to CI? Can you even do this stuff locally?

A myriad of testing tools and solutions are available, and Adam shows what’s out there and what we as a community need to do next to get the Holy Grail, to ensure a better Web experience for everyone.

Screenshot

Tip: One tool for testing that I’m loving at the moment is Testling-CI, which runs browser tests on every push.

Improving the Testability of Your Code

Writing Testable JavaScript, Rebecca Murphey (Audio)

It’s one thing to write the code that you need to write to get something working; quite another to write the code that you need to write to prove that it works — and to prove that it will continue to work as you refactor and add new features.

In her talk, Rebecca looks at what it means to write testable JavaScript code.

Screenshot

Conclusion

Time spent thinking about (and developing) your craft is time well spent. The more honed your skills are, the more opportunity you will have to become an efficient engineer.

While this list doesn’t cover every excellent talk presented this year, it hopefully offers some direction for you to accentuate your skills. Do consider reading through a few of them. Focused reading in this way will add to your value as a craftsperson and hopefully improve your daily development workflow.

With that, do enjoy the holiday season and have a fantastic new year.

(al)

© Addy Osmani for Smashing Magazine, 2012.

0
Your rating: None

  

“So, you do nothing all day.”

That’s how many people would respond to someone who says they spend the day with a pen or pencil in their hand. It’s often considered an empty practice, a waste of time. They’re seen as an empty mind puttering along with the busy work of scribbling.

But for us designers and artists, drawing pictures all day is integral to our process and to who we are as creative people, and despite the idea that those who doodle waste time, we still get our work done. So, then, why are those of us who draw pictures all day even tempted to think that someone who is doodling or drawing pictures in a meeting or lecture is not paying attention?

What does it mean to be a doodler, to draw pictures all day? Why do we doodle? Most of all, what does it mean to our work? It turns out that the simple act of scribbling on a page helps us think, remember and learn.

What Does It Mean To Doodle?

The dictionary defines “doodle” as a verb (“scribble absentmindedly”) and as a noun (“a rough drawing made absentmindedly”). It also offers the origins of the word “doodler” as “a noun denoting a fool, later as a verb in the sense ‘make a fool of, cheat.’”

But the author Sunni Brown offers my favorite definition of “doodle” in her TED talk, “Doodlers, unite!”:

“In the 17th century, a doodle was a simpleton or a fool, as in “Yankee Doodle.” In the 18th century, it became a verb, and it meant to swindle or ridicule or to make fun of someone. In the 19th century, it was a corrupt politician. And today, we have what is perhaps our most offensive definition, at least to me, which is the following: “To doodle officially means to dawdle, to dilly dally, to monkey around, to make meaningless marks, to do something of little value, substance or import and,” my personal favorite, “to do nothing.” No wonder people are averse to doodling at work. Doing nothing at work is akin to masturbating at work. It’s totally inappropriate.”

It is no wonder, then, why most people do not have great expectations of those who “draw pictures all day.” Or perhaps they are inclined to think that those who draw pictures all day are not highly intellectual and are tempted to say to them condescendingly, “Go and draw some of your pictures.” As designers, many of us have heard such comments, or at least felt them implied, simply because we think, express or do things differently.

Why Do We Doodle?

Consider that even before a child can speak, they can draw pictures. It is part of their process of understanding what’s around them. They draw not just what they see, but how they view the world. The drawing or doodle of a child is not necessarily an attempt to reflect reality, but rather an attempt to communicate their understanding of it. This is no surprise because playing, trial and error, is a child’s primary method of learning. A child is not concerned with the impressions that others get based on their drawings or mistakes.

An Example of a doodle
An example of a doodle.

Their constant drawing, picture-making and doodling is a child’s way of expressing their ideas and showing their perceptions in visual form. It comes from a need to give physical form to one’s thoughts. Similarly, an adult doodles in order to visualize the ideas in their head so that they can interact with those ideas.

Visual Learners

According to Linda Silverman, director of both the Institute for the Study of Advanced Development and the Gifted Development Center and author of Upside-Down Brilliance: The Visual-Spatial Learner, 37% of the population are visual learners. If so many people learn better visually, we can expect, then, that some of them learn better by putting a speech, lecture or meeting into visual and tangible form through pictures or doodles, rather than by being provided with pictures or doodles (which would be the product of another person’s mind).

37% of the population are visual learners

Humans have always had a desire to visually represent what’s in their minds and memory and to communicate those ideas with others. Early cave paintings were a means of interacting with others, allowing an idea or mental image to move from one person’s mind to another’s. The purpose of visual language has always been to communicate ideas to others.

Secondly, we doodle because our brain is designed to empathize with the world around us. According to Carol Jeffers, professor at California State University, our brains are wired to respond to, interact with, imitate and mirror behavior. In an article she wrote, she explains the recent research into “mirror neurons” which help us understand and empathize with the world around us.

A cave painting
Cave paintings were our first means of communicating ideas to others.

Think of it this way. When you’re at an art gallery and find a painting that intrigues you, what is your first reaction? You want to touch it, don’t you? I thought so.

When I was a ballroom dancer, I used to sit and watch those who I considered to be great dancers, tracing their forms in space with my index finger as a way to commit them to memory. I used to go to galleries and museums and, at a distance, trace the lines and forms that I saw in the paintings and designs. I did this out of curiosity and a desire to physically record what I saw to memory.

Nearly 100 years ago, Maria Montessori discovered the link between physical touch and movement and learning in children. Montessori education teaches children to trace the letters of the alphabet with their index finger as a way to commit their shapes to memory. My son used to trace forms that he found interesting in space. It’s safe to say, then, that we doodle to visually commit to memory a concept that we want to both empathize and interact with.

An experiment conducted by Jackie Andrade, professor of psychology at the University of Plymouth in England, demonstrated the positive effect that doodling has on memory retention. In the experiment, 40 people were given a simple set of instructions to take RSVP information over the phone from people going to a party. The group of 40 was divided in two. One group of 20 was told to doodle (limited to shading in order not to emphasize the quality of the doodles), and the other 20 would not doodle.

The doodlers recalled 29% more information.

Doodling a lightbulb
Doodling helps us retain information.

The study showed that doodling helps the brain to focus. It keeps the mind from wandering away from whatever is happening, whether it’s a lecture, reading or conference talk.

Still, we have become bored with learning.

Professor Emeritus at Cornell University, Joseph D. Novak argues that this is because we have been taught to memorize but not to evaluate the information being given to us. In many traditional settings, the pattern is simple and dull: sit, receive and memorize. Many traditional educational systems do not encourage active engagement with the material. Doodling, drawing and even making diagrams helps us not only engage with the material, but also identify the underlying structure of the argument, while also connecting concepts in a tactile and visual way. Jesse Berg, president of The Visual Leap, pointed out to me in a conversation that doodling is a multisensory activity. While our hand is creating what might seem to be random pictures, our brain is processing the stimuli that’s running through it.

Many of us are the product of traditional schooling, in which we were made to numbingly memorize dates and facts, and many of us continue this pattern later in life. While some of us were avid doodlers (I used to fill the backs of my notebooks with pictures and draw on desks with a pencil during class), some of us stopped at high school, others in college and others once we settled into a job. At some point during the education process, doodling was discouraged. Teachers most likely viewed it as a sign of inattentiveness and disrespect. After hard preparation, educators want nothing more than unwavering attention to their lectures. The irony is that, according to Andrade’s study, doodlers pay more attention to the words of educators than we think.

In her TED talk, Sunny Brown goes on to explain the benefits of doodling and even offers an alternative to the definition found in the Oxford Dictionary:

“Doodling is really to make spontaneous marks to help yourself think. That is why millions of people doodle. Here’s another interesting truth about the doodle: People who doodle when they’re exposed to verbal information retain more of that information than their non-doodling counterparts. We think doodling is something you do when you lose focus, but in reality, it is a preemptive measure to stop you from losing focus. Additionally, it has a profound effect on creative problem-solving and deep information processing.”

How Can Designers Use This To Their Benefit?

As designers, we have a unique advantage when it comes to doodling. We don’t just doodle to keep our minds focused — we also deliberately sketch ideas in order to problem solve and to get immediate feedback from clients and peers. Designers such as Craighton Berman and Eva-Lotta Lamm are two of the biggest proponents of the “sketchnotating” movement. Berman states that sketchnotating “forces you to listen to the lecture, synthesize what’s being expressed, and visualize a composition that captures the idea — all in real time.”

In 2009, I came across a book titled The Back of the Napkin by Dan Roam. Roam is a business strategist and founder of Digital Roam, a management-consulting firm that uses visual thinking to solve complex problems. He uses a simple approach to solving problems visually. Every idea is run through five basic questions to encourage engaged thinking and to ensure a meaningful meeting. The process takes the acronym SQVI^. S is for simple or elaborate, Q is for qualitative or quantitative, V is for vision or execution, I is for individual or comparison, and ^ is for change or status quo. These simple choices are worked through with simple doodles in order to better understand the problem and find a solution. In his book, Roam says:

“What if there was a way to more quickly look at problems, more intuitively understand them, more confidently address them, and more rapidly convey to others what we’ve discovered? What if there was a way to make business problem solving more efficient, more effective, and — as much as I hate to say it — perhaps even more fun? There is. It’s called visual thinking, and it’s what this book is all about: solving problems with pictures.”

After discovering Roam’s book, I decided to doodle again. Once a prolific doodler and drawer, I had become inactive in lectures and similar settings, often forgetting what was said. Taking notes felt too cumbersome, and I often missed words and ideas. I decided to give doodling another shot. Instead of focusing on specifics, I would focus on concepts, key words and ideas.

Since 2011, I have been actively promoting doodling in my design classes, making a deal with my students, saying to them, “Doodle to your heart’s content, but in return I want you to doodle the content of my lectures.” They are skeptical at first, but they soon realize that doodling is better than having a quiz. I reap the benefits of doodling, and by allowing them to doodle — with the requirement that it be based on the class’ content — they become more informed of the topic and they engage in more meaningful conversations about design.

A sketchbook
A designer’s best friend: a sketchpad.

The typographic novices in my classes naturally start to apply the principles of visual hierarchy and organization, grouping ideas either by importance or by category. They will group ideas with lines, boxes, marks and more. Headings and lecture titles might be made larger, more ornate or bolder, and key concepts might be visually punctuated. It is fascinating how natural and almost second-nature the idea of visual hierarchy is to all of us. The learning curve of typography is steep for some of us, but doodling and sketchnotating really makes it easier to grasp. Below are some doodles by students in my classes.

Introduction to Typography lecture doodle by Alisa Roberts
Doodle by Alisa Roberts from my “Introduction to Typography” course.

By picking out concepts, ideas and topics, the students start to establish a hierarchy by making visual groupings and start to use visual punctuation. By the time I assign work on typographic hierarchy, the sketches tend to show more astuteness. Transferring these sketches to the computer is a challenge for those new to typography, but once they naturally understand the relationships in what they are doing, they start to make smarter design decisions.

Identity and Branding class lecture doodle by Aubrie Lamb
Doodle by Aubrie Lamb from my “Identity and Branding” course.

Identity and Branding class lecture doodle by Aubrie Lamb
Another by Aubrie Lamb from the same course.

As we have seen, doodling has many benefits, beyond what designers as visual communicators and problem solvers use it for. Doodling also helps our brain function and process data. Those of us who doodle should do so without feeling guilty or ashamed. We are in good company. Historically, doodlers have included presidents, business moguls and accomplished writers. Designer, educator and speaker Jason Santa Maria says this:

“Sketchbooks are not about being a good artist. They’re about being a good thinker.”

Doodling, drawing pictures and sketchnotating are about using visual skills to solve problems, to understand our world and to respond effectively. So, what are you waiting for? Doodle!

Further Reading

Unless otherwise stated, images are from Stock.XCHNG.

(al) (il)

© Alma Hoffmann for Smashing Magazine, 2012.

0
Your rating: None

Amazing WaterfallCame across this beautiful and stunning waterfall photo. Unfortunately I don’t know who took it nor where exactly it is, supposedly somewhere in China. HiRes Version (1920×1440)

0
Your rating: None

Amazing New York Aerial ShotsIf you, like me, enjoy this stunning aerial shot of New York. Head over to Tim Sklyarov’s photostream or his website www.timsklyarov.com, there are more mind-blowing city aerials.

0
Your rating: None

36

alô? border=cowgirl
(sketchbook doodles. Click on the images for bigger versions)

0
Your rating: None

Incredible Slow Motion BreakdanceWhat an incredible video, on so many levels. Realized by Alex Yde & danced by Arthur Cadre. Awolnation – Sail

0
Your rating: None