Skip navigation
Help

encryption

warning: Creating default object from empty value in /var/www/vhosts/sayforward.com/subdomains/recorder/httpdocs/modules/taxonomy/taxonomy.pages.inc on line 33.

Sparrowvsrevolution writes "At the Fast Software Encryption conference in Singapore earlier this week, University of Illinois at Chicago Professor Dan Bernstein presented a method for breaking TLS and SSL web encryption when it's combined with the popular stream cipher RC4 invented by Ron Rivest in 1987. Bernstein demonstrated that when the same message is encrypted enough times--about a billion--comparing the ciphertext can allow the message to be deciphered. While that sounds impractical, Bernstein argued it can be achieved with a compromised website, a malicious ad or a hijacked router." RC4 may be long in the tooth, but it remains very widely used.

Share on Google+

Read more of this story at Slashdot.

0
Your rating: None

Werwin15

Researchers have devised two new attacks on the Transport Layer Security and Secure Sockets Layer protocols, the widely used encryption schemes used to secure e-commerce transactions and other sensitive traffic on the Internet.

The pair of exploits—one presented at the just-convened 20th International Workshop on Fast Software Encryption and the other scheduled to be unveiled on Thursday at the Black Hat security conference in Amsterdam—don't pose an immediate threat to the millions of people who rely on the Web-encryption standards. Still, they're part of a growing constellation of attacks with names including BEAST, CRIME, and Lucky 13 that allow determined hackers to silently decrypt protected browser cookies used to log in to websites. Together, they underscore the fragility of the aging standards as they face an arsenal of increasingly sophisticated exploits.

"It illustrates how serious this is that there are so many attacks going on involving a protocol that's been around for years and that's so widely trusted and used," Matthew Green, a professor specializing in cryptography at Johns Hopkins University, told Ars. "The fact that you now have CRIME, BEAST, Lucky 13, and these new two attacks within the same week really illustrates what a problem we're facing."

Read 14 remaining paragraphs | Comments

0
Your rating: None

Tim Lord met Jay Kim at the RSA Conference in an Francisco. Kim's background is in manufacturing, but he's got an interest in security that has manifested itself in hardware with an emphasis on ease of use. His company, DataLocker, has come up with a fully cross-platform, driver independent portable system that mates a touch-pad input device with an AES-encrypted drive. It doesn't look much different from typical external USB drives, except for being a little beefier and bulkier than the current average, to account for both a touchpad and the additional electronics for performing encryption and decryption in hardware. Because authentication is done on the face of the drive itself, it can be used with any USB-equipped computer available to the user, and works fine as a bootable device, so you can -- for instance -- run a complete Linux system from it. (For that, though, you might want one of the smaller-capacity, solid-state versions of this drive, for speed.) Kim talked about the drive, and painted a rosy picture of what it's like to be a high-tech entrepreneur in Kansas.

Share on Google+

Read more of this story at Slashdot.

0
Your rating: None


One of the Twitter feeds MiniDuke-infected machines use to locate a command-and-control server.

Kaspersky Lab

Unidentified attackers have infected government agencies and organizations in 23 countries with highly advanced malware that uses low-level code to stay hidden and Twitter and Google to ensure it always has a way to receive updates.

MiniDuke, as researchers from Kaspersky Lab and Hungary-based CrySyS Lab have dubbed the threat, bears the hallmark of viruses first encountered in the mid-1990s, when shadowy groups such as 29A engineered innovative pieces of malware for fun and then documented them in an E-Zine by the same name. Because MiniDuke is written in assembly language, most of its computer files are tiny. Its use of multiple levels of encryption and clever coding tricks makes the malware hard to detect and reverse engineer. It also employs a method known as steganography, in which updates received from control servers are stashed inside image files.

In another testament to the skill of the attackers, MiniDuke has taken hold of government agencies, think tanks, a US-based healthcare provider, and other high-profile organizations using the first known exploit to pierce the security sandbox in Adobe Systems' Reader application. Adding intrigue to this, the MiniDuke exploit code contained references to Dante Alighieri's Divine Comedy and also alluded to 666, the Mark of the Beast discussed in a verse from the Book of Revelation.

Read 11 remaining paragraphs | Comments

0
Your rating: None

Aurich Lawson

Researchers have uncovered a never-before-seen version of Stuxnet. The discovery sheds new light on the evolution of the powerful cyberweapon that made history when it successfully sabotaged an Iranian uranium-enrichment facility in 2009.

Stuxnet 0.5 is the oldest known version of the computer worm and was in development no later than November of 2005, almost two years earlier than previously known, according to researchers from security firm Symantec. The earlier iteration, which was in the wild no later than November 2007, wielded an alternate attack strategy that disrupted Iran's nuclear program by surreptitiously closing valves in that country's Natanz uranium enrichment facility. Later versions scrapped that attack in favor of one that caused centrifuges to spin erratically. The timing and additional attack method are a testament to the technical sophistication and dedication of its developers, who reportedly developed Stuxnet under a covert operation sponsored by the US and Israeli governments. It was reportedly personally authorized by Presidents Bush and Obama.

Also significant, version 0.5 shows that its creators were some of the same developers who built Flame, the highly advanced espionage malware also known as Flamer that targeted sensitive Iranian computers. Although researchers from competing antivirus provider Kaspersky Lab previously discovered a small chunk of the Flame code in a later version of Stuxnet, the release unearthed by Symantec shows that the code sharing was once so broad that the two covert projects were inextricably linked.

Read 24 remaining paragraphs | Comments

0
Your rating: None

Aurich Lawson / Thinkstock

Encryption, the transformation of data into a form that prevents anyone unauthorized from understanding that data, is a fundamental technology that enables online commerce, secure communication, and the protection of confidential information.

Encryption algorithms are the mathematical formulae for performing these transformations. You provide an encryption algorithm with a key and the data you want to protect (the plaintext), and it produces an encrypted output (the ciphertext). To read the output, you need to feed the key and the ciphertext into a decryption algorithm (sometimes these are identical to encryption algorithms; other times they are closely related but different).

Encryption algorithms are designed so that performing the decryption process is unfeasibly hard without knowing the key.

Read 55 remaining paragraphs | Comments

0
Your rating: None

Aurich Lawson

In the 1990s, client-server was king. The processing power of PCs and the increasing speed of networks led to more and more desktop applications, often plugging into backend middleware and corporate data sources. But those applications, and the PCs they ran on, were vulnerable to viruses and other attacks. When applications were poorly designed, they could leave sensitive data exposed.

Today, the mobile app is king. The processing power of smartphones and mobile devices based on Android, iOS, and other mobile operating systems combined with the speed of broadband cellular networks have led to more mobile applications with an old-school plan: plug into backend middleware and corporate data sources.

But these apps and the devices they run on are vulnerable… well, you get the picture. It's déjà vu with one major difference: while most client-server applications ran within the confines of a LAN or corporate WAN, mobile apps are running outside of the confines of corporate networks and are accessing services across the public Internet. That makes mobile applications potentially huge security vulnerabilities—especially if they aren't architected properly and configured with proper security and access controls.

Read 32 remaining paragraphs | Comments

0
Your rating: None


A representation of how TLS works.

Nadhem J. AlFardan and Kenneth G. Paterson

Software developers are racing to patch a recently discovered vulnerability that allows attackers to recover the plaintext of authentication cookies and other encrypted data as they travel over the Internet and other unsecured networks.

The discovery is significant because in many cases it makes it possible for attackers to completely subvert the protection provided by the secure sockets layer and transport layer protocols. Together, SSL, TLS, and a close TLS relative known as Datagram Transport Layer Security are the sole cryptographic means for websites to prove their authenticity and to encrypt data as it travels between end users and Web servers. The so-called "Lucky Thirteen" attacks devised by computer scientists to exploit the weaknesses work against virtually all open-source TLS implementations, and possibly implementations supported by Apple and Cisco Systems as well. (Microsoft told the researchers it has determined its software isn't susceptible.)

The attacks are extremely complex, so for the time being, average end users are probably more susceptible to attacks that use phishing e-mails or rely on fraudulently issued digital certificates to defeat the Web encryption protection. Nonetheless, the success of the cryptographers' exploits—including the full plaintext recovery of data protected by the widely used OpenSSL implementation—has clearly gotten the attention of the developers who maintain those programs. Already, the Opera browser and PolarSSL have been patched to plug the hole, and developers for OpenSSL, NSS, and CyaSSL are expected to issue updates soon.

Read 13 remaining paragraphs | Comments

0
Your rating: None

Aurich Lawson

My family has been on the Internet since 1998 or so, but I didn't really think much about Internet security at first. Oh sure, I made sure our eMachines desktop (and its 433Mhz Celeron CPU) was always running the latest Internet Explorer version and I tried not to use the same password for everything. But I didn't give much thought to where my Web traffic was going or what path it took from our computer to the Web server and back. I was dimly aware that e-mail, as one of my teachers put it, was in those days "about as private as sticking your head out the window and yelling." And I didn't do much with that knowledge.

That sort of attitude was dangerous then, and the increasing sophistication of readily available hacking tools makes it even more dangerous now.  Luckily, the state of Internet security has also gotten better—in this article, the first in a five-part series covering online security, we're going to talk a bit about keeping yourself (and your business) safe on the Web. Even if you know what lurks in the dark corners of the Internet, chances are you someone you know doesn't. So consider this guide and its follow-ups as a handy crash course for those unschooled in the nuances of online security. Security aficionados should check out later entries in the series for more advanced information

We'll begin today with some basic information about encryption on the Internet and how to use it to safeguard your personal information as you use the Web, before moving on to malware, mobile app security, and other topics in future entries. 

Read 21 remaining paragraphs | Comments

0
Your rating: None

jfruh writes "Call it Google Analytics for physical storefronts: if you've got a phone with wi-fi, stores can detect your MAC address and track your comings and goings, determining which aisles you go to and whether you're a repeat customer. The creator of one of the most popular tracking software packages says that the addresses are hashed and not personally identifiable, but it might make you think twice about leaving your phone on when you head to the mall."

Share on Google+

Read more of this story at Slashdot.

0
Your rating: None